Developmental and hormonal regulation of NR2A mRNA in forebrain regions controlling avian vocal learning.
نویسندگان
چکیده
Developmental changes in the composition of NMDA receptors can alter receptor physiology as well as intracellular signal transduction cascades, potentially shifting thresholds for neural and behavioral plasticity. During song learning in zebra finches, NMDAR currents become faster, and transcripts for the modulatory NR2B subunit of this receptor decrease in lMAN, a region in which NMDAR activation is critical for vocal learning. Using in situ hybridization, we found that NR2A transcripts change reciprocally, increasing significantly in both lMAN (59%) and in another song region, Area X (38%), between posthatch day (PHD) 20 and 40, but not changing further at PHD60 or 80. In adjacent areas not associated with song learning, NR2A mRNA did not change between PHD20-80. Although early song deprivation (which extends the sensitive period for song learning) delays changes in NR2B gene expression and NMDAR physiology within the lMAN, it did not alter NR2A mRNA levels measured at PHD40, 45, or 60. Early testosterone (T) treatment, which disrupts vocal development and accelerates the maturation of both NR2B levels and NMDAR physiology in lMAN, also significantly increased NR2A transcripts measured at PHD35 in lMAN. In Area X, a similar effect of T approached significance. Together with our previous studies, these results show that in a pathway critical for vocal plasticity, the ratio of NR2A:NR2B mRNA rises abruptly early during the sensitive period for song learning. Furthermore, androgen regulation of NMDAR gene expression may alter thresholds for experience-dependent synaptic change.
منابع مشابه
Developmental patterns of NMDAR expression within the song system do not recur during adult vocal plasticity in zebra finches.
All songbirds learn to sing during postnatal development but then display species differences in the capacity to learn song in adulthood. While the mechanisms that regulate avian vocal plasticity are not well characterized, one contributing factor may be the composition of N-methyl-D-aspartate receptors (NMDAR). Previous studies of an anterior forebrain pathway implicated in vocal plasticity re...
متن کاملEarly sensory and hormonal experience modulate age-related changes in NR2B mRNA within a forebrain region controlling avian vocal learning.
Male zebra finches are most apt to mimic songs heard between posthatch days (PHD) 35 and 65, and this vocal learning depends, in part, on the activation of N-methyl-D-aspartate receptors (NMDAR) within a discrete forebrain circuit that includes the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and area X. Using in situ hybridization, we show that transcripts for both the cons...
متن کاملDevelopmental regulation of NMDA receptor 2B subunit mRNA and ifenprodil binding in the zebra finch anterior forebrain.
In passerine songbirds, song learning often is restricted to an early sensitive period and requires the participation of several discrete regions within the anterior forebrain. Activation of N-methyl-D-aspartate (NMDA) receptors is implicated in song learning and in one forebrain song region, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), NMDA receptors decrease in densit...
متن کاملSeasonal regulation of NMDA receptor NR2B mRNA in the adult canary song system.
Developmental changes in the composition and function of N-methyl-D-aspartate receptors (NMDARs) are believed to regulate neural plasticity. For example, in songbirds, vocal learning entails NMDAR activation, and the sensitive period for such learning in zebra finches (ZFs) parallels developmental changes in NMDAR density and phenotype within several song-related brain regions. In contrast to Z...
متن کاملVocal matching and intensity of begging calls are associated with a forebrain song circuit in a generalist brood parasite.
Vocalizations produced by developing young early in life have simple acoustic features and are thought to be innate. Complex forms of early vocal learning are less likely to evolve in young altricial songbirds because the forebrain vocal-learning circuit is underdeveloped during the period when early vocalizations are produced. However, selective pressure experienced in early postnatal life may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2002